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Quantum relaxation is studied in coupled quantum baker's maps. The classical 
systems are exactly solvable Kolmogorov systems, for which the exponential 
decay to equilibrium is known. They model the fundamental processes of trans- 
port in classically chaotic phase space. The quantum systems, in the absence of 
global symmetry, show a marked saturation in the level of transport, as the sup- 
pression of diffusion in the quantum kicked rotor, and eigenfunction localization 
in the position basis. In the presence of a global symmetry we study another 
model that has classically an identical decay to equilibrium, but quantally shows 
resonant transport, no saturation, and large fluctuations around equilibrium. 
We generalize the quantization to finite multibaker maps. As a byproduct we 
introduce some simple models of quantal tunneling between classically chaotic 
regions of phase space. 

KEY WORDS: Relaxation; quantum chaos; baker's map; quantum baker's 
map; quantum multibaker map. 

1. I N T R O D U C T I O N  

The  a p p r o a c h  to the rmal  equ i l i b r ium proceeds  via a mix ing  process  

in phase  space engende red  by s t rong  g loba l  chaos  on  the energy  shell. 

The  presence  o f  such s t rong  chao t ic i ty  in l ow-d imens iona l  de te rminis t ic  

d y n a m i c a l  systems is one  of  the i m p o r t a n t  d iscover ies  o f  the m o d e r n  theory  
of  d y n a m i c a l  systems and  has  been reviewed extensively  (see, for example ,  

Percival~21~). M a n y  features o f  classical  chaos  have  been exp lo red  wi th  the 

help o f  classical  maps ,  whe the r  as Po incar6  sect ions  o f  the ac tual  flow in 

phase  space o r  as abs t rac t  t r ans fo rma t ions  of  s o m e  manifold .  
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The study of quantum systems with a view toward the manifestations 
of chaoticity has also been extensive. ~3'4~ The concept of low-dimensional 
maps plays a central role in the study of classical dynamical systems. This 
idea can also be exploited to study quantum dynamical systems. Such 
quantum maps h a v e  been constructed and provide some of the simplest 
models to study the quantum manifestations of classical chaos. The quan- 
tum maps studied either quantize time-periodic systems ~sl or abstract maps 
like the cat map ~6~ and baker's map. c7) In these cases we interpret a quan- 
tum map as a unitary operator which propagates states during one time 
step, has the proper classical limit, and preserves classical symmetries. 
Recently Bogomolny has constructed semiclassical quantum maps from 
classical Poincar6 sections. ~sl Quantum maps indeed provide the simplest 
models to study the quantal manifestations of classical chaos. 

In this paper we use quantum maps to investigate the relaxation of a 
quantum system to equilibrium. One of the deterministic classical systems 
(a representative of a large class of maps) that we will be quantizing is 
strongly chaotic and is isomorphic to a stochastic Markov chain. This 
exactly solvable system consisting of three coupled baker's maps was 
studied by Elskens and Kapral ~ to model chemical rate laws and to 
study the microscopic origins of the rate constants. We can think of it as 
modeling two regions in phase space that are chaotic within each other 
and that are coupled by a mixing mechanism that can be controlled by a 
parameter. The rate of relaxation to global equilibrium would depend on 
this parameter. We will call such a map the three-bakers' map. 

Similar situations arise in the study of classical transport, when diffu- 
sion is impeded by the presence of partial barriers like cantori, ts~ A phase 
point might be trapped in a given region of phase space for a long time and 
then ejected to some other region to again spen'd a long time there. The 
presence of this trapping could significantly affect quantum transport. Such 
effects have been studied and reviewed by Bohigas et  al. ~~ using random 
matrix theory and the model of coupled quartic oscillators. Our present 
interest in these simple maps is threefold: (a) we wish to introduce an inter- 
action between chaotic maps; (b) we want to investigate how far quantum 
effects combined with the interaction introduce new time scales or modify 
old ones; (c) we want to create simple maps which admit tunneling 
phenomena upon quantization. 

The quantization of the bakers' map ~7~ allows us to quantize the three- 
bakers' map in a similar fashion. As a byproduct of this quantization we 
get some simple models of tunneling in quantum systems with chaotic 
classical limits. We display the eigenangle splitting in one such model. 

In Section 2 we introduce and discuss the classical models to be quan- 
tized. In Section 3 we quantize these maps as well as quantize two other 
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finite multibaker maps/2~ In Section 4 we present the numerical results 
and in Section 5 we discuss these results. We end with a summary in 
Section 6. 

2. THE CLASSICAL MAPS 

2.1. The Maps 

Since the first map we are quantizing is essentially that introduced by 
Elskens and Kapral, we refer to their work ~ for a very exhaustive and 
illuminating discussion of these maps. Here we provide only the essential 
details necessary to understand the present paper. All the maps below are 
area-preserving and piecewise linear. The second map is a variant of that 
studied in ref. 1, and we introduce it due to reasons that will become 
apparent when we discuss the quantum maps in Section 3. 

The phase space is the square [0, 1) x [0, 1) and is composed of two 
regions or "cells" A[0, 1/2)x [0, 1) and B[ 1/2, 1)• [0, 1) within which we 
will place bakers so that there is perfect mixing within regions A and B, but 
there is no exchange of phase space densities between them. Then we will 
introduce a third baker in the region or "cell" C [ ( 1 - ~ ) / 2 ,  (1 +c0 /2 )x  
[0, 1). Here 0~<~< 1 is the horizontal width of the overlapping cell C 
which provides the mixing among the cells A and B; ~ is the control 
parameter or the strength of the "interaction", c~/2 is the overlap of C in 
each of the disjoint cells A and B. See Fig. l(c). 

The first two maps we will consider below have identical classical 
relaxation behaviors, but their quantal versions are vastly different (we will 
introduce further models in Section 3 that will share some of these relaxa- 
tion laws). The first map, F~ is essentially identical to the construction in 
ref. 1, except for the details of scaling and choice of labels p and q. We write 
F~ as a composition of three baker's maps, M~, MA, and Me. The map 
M A acts on region A and it leaves the rest of phase space unaffected. If 
(q,p)EA and MA(q,p)=(q',p'), then 

~(2q, p/2), 
(q" P') - / ( 2 q  - 1/2, (p + 1 )/2), 

0<~q< 1/4 
(1) 

1/4~<q< 1/2 

If (q, p) ~ B and Ms(q, p) = (q', p' ), then 

(q,, p,) = f(~,2q 1/2, p/2), 1 

[(2q 1, (p + l )/2), 

1/2 ~< q < 3/4 
(2) 

3/4<~q< 1 

822/77/1-2-22 
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(o) 
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Fig. I. (a) The baker's map partition before the transform. Left and right partitions are 
marked. (b) The partition after one time step. L goes into B, and R goes into 7-. (c) The "cells" 
A, B, and C shown schematically for the maps F~ '-'. The width of the rectangle C is a. 
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If (q,p) e C and M c ( q , p )  = (q' ,p') ,  then 

~'(2q - (1 - ~)/2, p/2), 
(q"P ' )  = ( ( 2 q -  (I ~t)/2, (p + 1)/2), 

F'~ = M c M s M  A 

( 1 - ct)/2 ~< q < 1/2 
(3) 

l /2~<q<(1 +=)/2 

(4) 

We also define just the mixing within the cells A and B, without the inter- 
I action (two rectangular bakers side by side in cells A and B) as MAn, 

1 M A n =  M A M s  (5) 

To distinguish the case when there is an interaction from that when there 
are only noninteracting disjoint bakers, we have introduced the symbol F. 
(Here and in the rest of the paper, superscripts on M, F, and B are indices 
and not powers. Any exception to this rule will be explicitly indicated.) Thus 
the cells A and B have disjoint bakers and the baker in C effects a com- 
munication between them. When ~ = 0, there is no interaction. Elskens and 
KapraP ~ showed that the transformation F~ had strongly ergodic proper- 
ties. For rational values of co, they constructed finite Markov partitions, tljl 
They showed that when 0c = 1/2, the transformation F_ ~ is isomorphic to a 
Bernoulli shift. The motion is ergodic with respect to the usual Lebesgue 
measure, the area. This implies that the Lyapunov exponent, the measure 
of the rate of exponential separation of nearby points, is 2 = (1 + ct) Log 2. 
All sufficiently smooth phase space densities evolve into the uniform dis- 
tribution, a unique equilibrium distribution. 

The second map we will study, F 2, has identical dynamics in cells A 
and C; we have bakers defined in them via MA and M c  [Eqs. (1) and (3)], 
in cell B we reflect the baker of cell A about the line q =  1/2 instead of 
translating it. The entire dynamics in cells A and B, M2 s  without the inter- 
action C, is as follows. If M 2 s ( q , p )  = (q' ,p') ,  

, , , , )((2q--1/2,p/2),  0~<q< 1/4 

1/2, (p + 1)/2), q t q , P ) = ~ ( 2 q -  1/4~< <3/4  (6) 
1 

{(2q - 1, p/2), 3/4 ~< q < 1 

The complete transformation, F~, during one time step is 

2 -  M c M 2  n (7) F ~ -  

2.2. The Relaxat ion  Laws 

The classical steady state is described by the microcanonical ensemble. 
The approach to this equilibrium is evidently governed by the parameter ~t; 
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the larger the value of ~, the faster will be the approach to the steady state. 
The generally expected exponential relaxation to equilibrium is realized in 
the maps Fla '2 = F~ (We do not write the superscripts when we do not want 
to distinguish between the two maps.) We can find the relaxation laws by 
calculating suitable correlation functions. We do not expect there to be 
qualitative differences for slightly differing values of the parameter ct, and 
we concentrate on 0t = 1/2, 1/4, 1/8. For these cases we can find the explicit 
relaxation behaviors via the Markov matrices that describe the Markov 
processes isomorphic to these maps. Irrational ct values do not permit a 
finite partition, but, as noted in ref. l, we expect the relaxation to be close 
to that of the rational approximations of~. We do not unduly bother about 
this because the very act of quantization imposes the requirement that ct be 
rational. We relegate details of the Markov matrices to Appendix A. 

We consider the correlation between two densities given by the 
characteristic functions ZA and ZB defined as follows: 

1, (q,p)~A, B 
XA's(q'P)= 0, otherwise (8) 

We then propagate the density XA in time and find its overlap with Xs. This 
is the transition rate from region A to B for a density that is initially 
uniformly distributed in A, 

F '  (1, Fs EA 
~ZA(q,P) = ~0, P) (9) 

otherwise 

Here t is the time and takes values over the set of integers. The relaxation 
law is described by the correlation function 

I ! 

C~(t)= fo [0 xs(q,p) F',xA(q,p)dqdp (10) 

The simplicity of the model of three bakers allows us to evaluate 
exactly these correlation functions. For ~ = 1/2, 1/4, 1/8 they are 

C,/2(t) = ( 1 - 2 - ' ) / 4  (11 ) 

C,/4(t) = ( 2  - f l ,  2 t, - f12 } ~ ) / 8  (12) 

C,/s(t) = (4--  f132; - f l42~ - fl* 2" ) /16  (13) 

The first of these equations is given in ref. 1, and the others can be derived 
from the respective Markov partitions. (We indicate how to do this in 
Appendix A; see Fig. 2). The approximate values of the constants are 
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(0) 

5 2 1 0 

(b) 

2O 10 

32 O0 

21 11 

22 12 
33 01 

25 1,..3 

(c) 

21 11 

.32 

20 10 

01 

22 12 
33 O0 

23 13 

Fig. 2. (a) The partition for the maps F~li~. (b) The partition after one time step for the map 
Fill2 . This is the partition into which the partition of (a) has evolved. (c) The partition after 
one time step for the map F~/2. 
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/ / ,=1.8944, f 1 2 = 2 - f l , ,  2t=0.8090, ) , 2 = 1 / 2 - 2 , ,  / / ,=3.8479, //4= 
0.07601 + i0.0113, 23 = 0.9196, 2 4 = -0.2098 + i0.3031. 

We observe that there is an exponential decay or relaxation to the 
uniform distribution. The relaxation is in general a sum of exponentials 
with small oscillatory contributions; thus there are multiple relaxation 
times. The 2i, i = 1, 2, 3, 4, above are not the Lyapunov exponents, and are 
independent characteristics of the mixing system. During the first time step 
the slope of the relaxation curves are approximately ~, while for a further 
short linear regime the slope is approximately ~/2; thereafter the relaxation 
is exponential. 

The Markov partitions of the map F]  may be taken to be the same as 
that of F~=; hence the classical relaxation laws (11 )-(13) are identical. This 
of course does not mean that all the details of the classical mechanics are 
identical (for example, the exact locations of the periodic orbits are dif- 
ferent), but the "macroscopic" quantities of the systems, such as entropy, 
Lyapunov exponents, and correlation functions, are identical. This pair of 
classical models are interesting, because different microscopic dynamics 
generate not on/), the same equilibrium quantities, but also the same irrevers- 
ible macroscopic behavior. Two further models we will be studying are 
described in Section 3.3. In Section 4 we will be comparing C=(t) with their 
quantal equivalents. 

2.3 Classical Symmetries 

The map F ~ has several symmetries that were not discussed in ref. 1, 
presumably because they have no direct relevance to the classical relaxa- 
tion mechanisms described above. However, we can anticipate that these 
not only will significantly modify quantal transport, but most also be 
preserved for a correct quantization. Consider first the map F~. M a and 
Ms,  or together M~as inherit the symmetries of the usual bakers' maps 
defined by them. It is invariant under the following symmetry operations. 

1. RA:p ~ 1--p,  q--* 1/2--q, for cell A. This is the reflection sym- 
metry about the center of the rectangular cell A. 

2. Rs:p--* 1 -  p, q ~ 3 / 2 - q ,  for cell B. This is the reflection sym- 
metry about the center of the rectangular cell B. 

3. R: p---, 1 - p ,  q--+ 1 - q ,  for the entire phase space square. This is 
the global reflection symmetry about the center of the square. 

4. T: q --* (1/2 + q)(mod 1), this is the global symmetry of translation 
in position by 1/2. 
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These are all canonical phase space symmetries that must be preserved 
by the quantization. They are not independent of each other, as a transla- 
tion by 1/2 followed by a reflection about the center of the square is equiv- 
alent to reflection about the individual cells, but it is convenient to define 
them as here. The quantization proceeds piecewise; we will first quantize 
the "free" maps M L2 and then quantize the interaction. Thus we will 
require the quantal version of M~B to preserve all the canonical sym- 
metries listed above. When we add the interaction M c ,  the symmetries RA, 
RB, and T break, but due to the reflection symmetry of the interaction the 
global R symmetry is preserved. 

In the case of the map F~, there is the reflection symmetry about the 
individual cells A and B, RA and RB, but there is no global R or T 
symmetries. Instead there is an anticanonical symmetry S due to spatial 
reflection about the line q = 1/2 (p ~ p, q -~ 1 - q). There are many ways 
in which we can break R and T symmetries, but, as noted earlier, the 
advantage of F~ is that it shares the same relaxation laws as F~. 

In the next section we will write down the quantal propagators corre- 
sponding to the classical maps F 1 and F~. We will also quantize two finite 
"multibaker maps. ''rE~ We relegate some details of the quantization to the 
Appendix B. 

3. THE Q U A N T U M  M A P S  

In this section we will write down the unitary quantal propagators, or 
quantum maps. The method of quantizing these maps which have no 
Hamiltonian generating them is facilitated by the quantization procedures 
of Balazs and V o r o s  (7) developed for the usual baker's map. We note 
that there is no "canonical" method to construct the propagator,  but the 
quantum baker of ref. 7 has proved to be a natural example and has been 
studied from several points of views. ('-'-~5~ The semiclassical trace can be 
written as a periodic orbit sum, ~'3"~4~ and heavy scaring has been noted in 
its eigenfunctions. ~5) The eigenangle statistics show level repulsion and fall 
into the universality class of G O E  random matrices. There are no 
eigenangle degeneracies and all eigenangles are irrational multiples of 2~. It 
is thus a prototype for the study of the quantal manifestations of classical 
chaos. 

3.1. The Propagators  

The classical phase space used above is the unit square (using units 
such that the maximum position and momentum values are unity). One 
can make the classical phase space compact by identifying the opposite 
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edges, turning it thereby into a torus, and making the originally finite p 
and q periodic. 

The original phase torus can be divided into N phase cells of size h. 
Thus, according to the original ideas of Planck, the dynamical system has 
N states and the state space is an N-dimensional vector space. Since the 
original momentum and position operators are not periodic operators, we 
replace them with their unitary extensions, denoted as V and U. The eigen- 
vectors of U are the position eigenkets Iq,) and the eigenvectors of V are 
the momentum eigenkets ~p,,), with m, n = 0, 1, 2 ..... N - 1 .  The transfor- 
mation functions between the eigenstates of position and momentum are 
given by 

__ 1 e ( 2 n i / N ) l n  + I/2)(rn + 1/2) (GN) .... =(q , ,  I P , , ) - - - ~  (14) 

Following Saraceno, ~15) we have adopted antiperiodic boundary con- 
ditions for the states [q,,) and [Pro). With V the unitary translation 
operator in position, we have 

(q,,,+ 1 [ = (q,,,[ V (15) 

and 

(q.,+NI = --(q,,,I = (q,.I VN (16) 

This requirement introduces the 1/2 in the phase of the Fourier trans- 
forms of Eqn. (14) and facilitates the preservation of classical phase space 
symmetries. This essentially places the position and momentum eigenvalues 
at half-integer rather than at integer sites. 

The unitary operator corresponding to the classical map M~n (just 
two noninteracting bakers placed side by side in cells A and B) in the 
position representation is given by 

(%o ) B i n =  G~ct /2 Gin2 0 (17) 

Although this looks like a rectangular matrix, it is, in fact, a square one. 
The matrices G~/2 and G~/2 are rectangular matrices of dimensions 
N/2 x N/4. They are simply the vertical left and right halves of the square 
matrix Gu/2, i.e., 

~(a~/2)  . . . .  
(aN/2).,,,  = ( ( a ~ / 2 ) . . . ,  

O <<. m <~ N/2 - 1 ,  O <~ n <<. N/4 - 1  
(18) 

O <~ m <~ N/2 - 1 ,  N/4 <<. n <~ N/2 - 1  
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while 0 is the null N/2 x N/4 matrix. Thus the "free" propagator BiB is a 
product of two simple matrices, and remarkably enough it is unitary. G;~' 
is a unitary matrix, and the unitarity of the second matrix term follows 
from the unitarity of GN/2, for this implies the following; 

G L  ~ / - t ,  ~ R  r R t  = I N ~ 2 ,  (19) N / 2  ~ N / 2  -t- I J  N / 2  Lr  N / 2  

GL, r:.t- _ ("~.Rt ('~,R : I N ~ 4  (20) 
N / 2  ~ N / 2  - -  ~ N / 2  ~ N / 2  

GL, nR _ nR,  ~L =ON/4 (21) N / 2  ~ N / 2  - -  ~ N / 2  ~ N / 2  

Here IN/4 and IN~ 2 a r e  the N/4 x N/4 and N/2 x N/2 identity matrices 
and 0/v/4 is the N/4 x N/4 null matrix. 

2 The propagator for the map MAs, which is a baker in cell A and a 
reflected baker in cell B, is given by 

(o o') B ~ B = G ; ,  G /2 0 0 G 2 (22) 

1,2 which again is a unitary matrix. Thus we have the "free" propagators BAB. 
A few observations are in order here. These propagators are not in a 
block diagonal form, and thus they engender the quantal phenomenon of 
tunneling. The classically isolated bakers in cells A and B are not quantally 
isolated. This was forced upon us because we chose to quantize the phase 
space as a whole. We could have considered the bakers in cells A and B to 
act on disjoint Hilbert spaces of dimensions N/2. This would simply give us 
in the position representation the propagator 

L) 
Here BN/2 is the baker on N/2 states; the baker for N states is given by the 
matrix of Eq. (B8), Appendix B. 

This propagator would neglect quantal tunneling, and we can consider 
it as a semiclassical propagator. Indeed, while quantizing the interacting 
baker in cell C we will adopt such a procedure, as we do not know how 
to do it otherwise. This will not alter qualitatively the relaxation behavior, 
as we expect such tunneling to be quite small. In Section 3.3 we will 
introduce models that do not require such piecewise quantization. The 
remarkable fact'is that Bsc and B~a which we have constructed from purely 
dynamical arguments must be near in all matrix metrics, and should tend 
toward each other in the limit of large N. The numerical comparison (not 
presented here) of relaxation laws engendered by these two class of 
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matrices supports this statement. A more rigorous comparison of these two 
families is yet to be done. 

Quantizing the action of M c  requires fixing a portion of the state 
space and "baking" the rest. We will require N0t to be an integer, and we 
take as the interaction the unitary matrix 

\[ I,i_ :,, N/z 0 ~ ) 

B c  = [ 0 BNa 
0 0 Ii I - ~,) N/2 

(24) 

Here B~r is the baker transform on N~ states, and it provides the 
interaction between cells A and B. Thus the full propagators quantizing the 
classical maps Fl, and F 2, given by Eqs. (4) and (7), are 

and 

i _ B c B ]  e (25) 

Z -  B c B ]  B (26) U s - 

Here the subscript ct explicitly shows the parameter dependence, or the 
strength of the interaction, and has nothing to do with the dimension of the 
matrices, which is N. The superscripts distinguish between the maps F~ and 
F]. We recollect that classical relaxation laws for the values of ~ = 1/2, 1/4, 
1/8 are given by Eqs. (11)-(13). 

3.2. Quantum Symmetries 

This section verifies that the "free" propagators introduced in the pre- 
vious section preserve the classical symmetries discussed in Section 2. The 
implications of these symmetries on the spectrum are discussed. As we shall 
see, this generates significant differences between the classical and quantal 
results. The classical map M~As, as we recall, is simply two bakers side by 
side in cells A and B; we take as its quantum map the unitary matrix Bin 
of Eq. (17). The classical map had the symmetries R A, RB, R, and T, which 
are reflections about the center of the cells A and B, reflection about the 
center of the square, and translation by 1/2. The quantal operator corre- 
sponding to T is simply the unitary translation operator of N / 2  sites in 
position ( T N = VN/2). This is diagonal in the momentum representation and 
is given by 

( T u )  ...... , = e  in(m+ I /2~t~, , , ,  m (27) 



Relaxation in Interacting Quantum Maps 323 

T~v = - 1  due to the antiperiodic boundary  conditions on the states, and 
hence the eigenvalues of  TN are + i. 

I The opera tor  BAs, evaluated explicitly in the momentum representa- 
tion, is given by 

<p,, , lB~slPm, ) - x / ~ i  e -''(2 . . . . .  '+1/21/,__ 1 (1 +e_ i~  ( . . . . . .  ')) 
2N sin n(2m - m '  + 1 /2 ) /N  

1, O<~m<~N/2-  1 
" e -i"~'''-Iv2, N / 2 < ~ m < ~ N - I  (28) 

Any matrix A ..... , commutes  with To  if and only if its entries are nonzero 
when either both  m and m'  are even or both  are odd. It is easily seen from 
the factor (1 + e  - ;~  . . . . .  ')) that this is true for ] (BAn),,,,,,. Hence we have 

[ BAn,) Tu] = 0 (29) 

(Here we are being sloppy in using the same symbols for the abstract  
opera tor  and its representat ion in a particular basis. Of  course when com- 
puting the c o m m u t a t o r  we would take the same basis for both operators.)  
Thus the quantal  model has the translation by 1/2 symmetry.  

For  the other symmetries,  it would be easier to write the operators  in 
the position basis. We introduce two functions 

1 
= sin(n(m - 2n - 1/2)/N) (30) 

v(m, n) 

1 
= cos(n(m -- 2n -- I /2)/N) (31) 

p ( m , n )  

Then an explicit evaluation of the matrix elements from Eq. (17) yields 

i x /~  ,/2)) 
( q.I B iB  Iq,,,) =-~--~- (1 - e  i'~'''- 

(v(n ,n ' ) ,  
�9 ~ e  i"" + I/z)/z(n, n'), 

| ~ ( n ,  n'), 
[,e " ' '  + l/2)v(n, n' ), 

The classical R symmetry  (p--* l - p ,  

O<~n<~N/4-1  

N/4 <~ n <~ N/2 - 1 

N/2 <~ n <~ 3N/4 - 1 

3N/4 <~ n <~ N - 1  

(32) 

q ~ l - q )  is quantally 
implemented I~y the opera tor  whose matrix elements in the position 
representation are given by 

<q,,I RN Iq.'> = 6 ( n + n ' +  1 - N )  (33) 
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1 m R N -  1, and thus the eigenvalues of this parity operator are ___ 1. Its com- 
mutation with Bin requires that 

( qN . . . .  , I BtAB lqN-,, '- '  ) = ( q,, I Bin Iq,,') (34) 

which is verified by a straightforward computation, using Eqs. (32). Thus 
the symmetry of reflection about the center of the square is preserved by 
the quantum map 

I [ B As, RN] = 0  (35) 

The classical symmetry of reflection about the center of each cell can 
also be implemented quantally. As we noted earlier, this symmetry can be 
thought of as a composition of TN and RN, and thus is not an independent 
symmetry; rather, it is the only canonical symmetry that is present in the 
map M-" As and its quantal equivalent, the matrix operator B~B. We will 
briefly discuss the corresponding quantal symmetry, as it is more trans- 
parent to do each verification separately. 

The required symmetry operator, in the position representation, must 
be given, up to a phase factor, by 6 ( n + n ' + l - N / 2 )  if n '<N/2  and by 
J(n + n ' +  1 - 3 N / 2 )  if n'>~ N/2. We fix the phases by requiring that in the 
momentum representation the symmetry operator be J ( m + m ' +  1 - N ) ,  
again, up to a possible phase factor. The operator consistent with the 
above requirements is given in the position representation by 

_ ~J(n  + n ' +  1 - N / 2 ) ,  0 <~n' <~ N/2 - ! 

( q " [ R ' u l q " ' ) - [ - J ( n + n ' + l - 3 N / 2 ) ,  N/2<~n'<~3N/2-1 (36) 

The classical composition is given quantum mechanically as 

R'u = TNRN (37) 

Our choice of the overall sign of R'N is consistent with this ordering of the 
operators TN and R N. The commutation of BiB with R~v is then immediate. 
We also note that TN and RN anticommute, 

R N T  N = - T N R  N (38) 

We can write all the symmetry operations of the propagator BiB as 
the group g, where 

g = (IN, - - I N ,  RN,  - - R N ,  T o ,  -- TN,  R N T  N, T N R  N) (39) 

This group is isomorphic to the point group C4,., the symmetry group of 
a square. There are five classes, and hence five irreducible representations 
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of g, four one-dimensional ones and one two-dimensional representation. 
The four one-dimensional representations are ruled out because R and T 
anticommute, and hence cannot share eigenvectors from the same ray. 
Therefore, the eigenvectors of B~s must be exactly doubly degenerate. The 
global symmetries of reflection about the center of the square and transla- 
tion by 1/2 were both needed to produce this degeneracy. 

In the presence of translation symmetry alone, the levels would have 
been nearly degenerate, displaying tunneling splitting. These would then be 
the simplest models exhibiting such splitting in the presence of classical 
chaos. For example, if we had (2/3, 1/3) bakers defined in cells A and B, 
we would have translation symmetry, but no reflection symmetry. If we 

L denote the vertical left and right halves of the square matrix G2N/3 by G2N/3 
and G~u/3 (with dimensions 2N/3 x N/3) and the vertical left and right 
halves of the square matrix GN/3 by G~r and G~/3 (with dimensions 
N/3 x N/6), we have for the propagator in the position representation 

) G2N/3 0 
B~s=G~, /3 G~/3 0 G~/3 (40) 

The above model displays tunneling splitting. The level splittings due 
to symmetrical structures in classical phase space have been called dynami- 
cal tunneling splittings, c~9~ The usual tunneling splitting is due to a poten- 
tial barrier, while dynamical tunneling is due to the structure of classical 
phase space. This has been studied in the Henon-Heiles system ~9~ and the 
anharmonic quartic oscillator/~~ The splittings are usually observed as 
being due to classically stable and symmetric orbits. The splittings may be 
irregular if the stable regions are surrounded by chaotic orbits. In the case 
of two noninteracting baker's maps in two cells, the splittings are solely due 
to classically chaotic and symmetrical structures. Let 0~ be the eigenangles 
of B 3 arranged in increasing Order and in units of 2re. Let Ai= ,4 B 

N(Og+ ~ - Oi), i = 1, 3, 5 ..... N -  1. A~ are the tunneling splittings scaled by 
the factor N. Figure 3 shows Ai for the case N =  150. The splittings are seen 
to be highly irregular and some of them are as high as the order of Planck's 
constant, in contrast to tunneling splittings due to potential barriers, which 
are exponentially small in Planck's constant. Such high splittings may seem 
to complicate the prior-to-splitting ordering of the levels. We must, 
however, note that there is no parameter that is switched on to activate the 
splittings. The splittings are intrinsic and would disappear only in he classi- 
cal limit. This limit is, however, reached not with a continuous parameter, 
but with a discrete parameter (N), and therefore we cannot tell when the 
ordering changed. 
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We now turn to the symmetries of the propagator B~s, which 
describes a baker in cell A and a reflected baker in cell B. The propagator 
in the position representation is given by the matrix in Eq. (22). The 
explicit matrix elements can be obtained by a straightforward evaluation of 
geometric sums, and is given by 

i x/~ - ,/21) (q,,I B~s Iq,,') =-~-~-- (1 - - e  imm 

f p(n, n'), O<~n' <<.N/4- 1 
�9 ~e i'~t'+ l/2~v(n, n'), N/4 <~ n' <~ 3N/4 - 1 (41) 

( -u (n ,  n'), 3N/4 <~ n' <~ N -  1 

where p(n, n') and v(n, n') are defined in Eqs. (30) and (31). 
We saw above that the symmetry of reflection about the center of each 

individual cell is represented by the operator R%. A direct computation 
demonstrates that 

I B i s ,  R'N] = 0  (42) 

Thus this symmetry is quantally preserved. The spatial reflection about the 
line q = 1/2 is an anticanonical symmetry, and is incorporated quantally as 
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an antiunitary operator. Let [~k) be a vector and its reflected partner be 
SN ]~b); then in the position representation we should have 

(q,,I Sg ]~k) = ( q ,  [RN [O)* (43) 

Complex conjugation can be thought of as ensuring the "wrong" sign of 
the momentum that makes the symmetry an anticanonical one. Thus 
the spatial reflection symmetry is implemented by RNK, where K is the 
conjugation operator. Spatial reflection symmetry would then require the 
operator to satisfy the condition 

R N B "-.,*~ R ,~ = B ~ . (44)  

which is once more easily verified using Eq. (41). The propagator B2s, 
being unitary, has its eigenvalues located on the unit circle. This symmetry 
implies that they fall into two classes each of which is the complex con- 
jugate of the other. Thus the reflection of the baker in cell B has a drastic 
effect on the degeneracies of the "free" propagator spectrum. It not only 
lifts such a degeneracy, but also "spreads" the eigenangles on the unit 
circle. This is one of the reasons we have introduced the second map, 
which, though classically of the same type as that discussed by Elskens and 
Kapral/~) is nevertheless quantally significantly different. Further on we 
show per se how this may affect transport, for we are not so much inter- 
ested in symmetries as in the implications they have on quantum relaxation 
to an equilibrium. 

The complete quantum maps are given by Eqs. (25) and (26) and they 
include the interaction due to the overlapping baker in C. Since this map 
B c given by the propagator of Eq. (24) preserves R symmetry, the complete 
propagator U~ also preserves R symmetry. The symmetries of translation 
and reflection about the individual cells for the "free" propagator B~s are 
broken. This lifts the degeneracy of the free propagator. But the persistence 
of the global R symmetry implies the existence of extended eigenstates. I f  
the interaction is small, we can expect that the near degeneracies introduce 
low-frequency, large-amplitude oscillations in the relaxation process, and 
that the extended eigenstates contribute to large transport. The complete 
propagator U 2, has no global or local symmetries and has no near 
degeneracies. This contrasts with the first case, and its implications for 
quantal transport are studied in the next section. 

It must be noted that the usual baker's map has a time-reversal sym- 
metry. It means that a time-reversed partner exists reflected about the 
secondary diagonal of the square. Such a time-reversal symmetry (which is 
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a combination of a phase space operation and reversing time) leads to the 
quantum baker's map possessing an antiunitary symmetry. We have not 
been able to verify the existence of the corresponding symmetry in the 
quantal free propagators BiB and B~8. It is a weak symmetry, but not a 
complete one. This, however, does not affect spectral features such as 
degeneracies or extent of eigenstates. The propagator Bsc [ Eq. (23)] would 
exactly preserve time-reversal symmetry, but we take the free propagator to 
be BiB because this associates one Hilbert space to the entire torus. 

3.3. Further Generalizations and Models 

The models we have studied above can be generalized in many ways. 
The individual baker's maps can be generalized to have cuts that partition 
the phase cells into unequal parts. One such free propagator was written 
above, the model B3B. Another possible and more interesting generaliza- 
tion is to include more cells. The quantization of three baker's maps placed 
side by side and not interacting can be quantized by methods similar to 

I that used for the propagator BAB. The interactions can then be added in 
the above manner. Thus we have a vast collection of simple models with, 
in principle, known classical relaxation laws and quantizations. The case 
when there is an infinite number of cells placed along the q direction with 
baker's maps defined on them and the interaction is provided by shifting 
the original array by one-half in the q direction was studied as the "multi- 
baker map" in ref. 20, classically. The truncation with a finite number of 
cells (finite multibaker map) with periodic boundary conditions can then 
be quantized using the methods presented in this paper. 

We will give some details on this last possible generalization, primarily 
because the interaction does not require piecewise quanti-ation. As we noted 
earlier, the interaction B c was associated with three independent Hilbert 
spaces. We will once more consider the case when the free propagator is 
Bin or BIB. The corresponding classical situation is one in which there are 
two noninteracting bakers in cells A and B, and the case when there is a 
baker's map in cell A and a reflected baker's map in cell B. Again we will 
consider periodic boundary conditions so that the free map is defined on 
a torus. 

The interaction can be prepared in many ways. Consider the following 
case. Once more we define two baker's maps in the two cells A and B. The 
classical map is described by MIB [Eq. (5)] and the quantized version is 
BiB [Eq. (17)]. We then shift the entire map by fl with respect to the 
original cells to the left in the q direction. This we take as the interaction. 
Note that if we do not shift at all (fl = 0), there is no interaction; there is 
no mixing among the cells A and B. If we shift by 1/2, there is again no 
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interaction between the cells A and B. The quantization of such an inter- 
action is straightforward and is given by 

VUPB]n V -  up (45) 

where V, defined by Eq. (15), is the position shift operator. V is diagonal 
in the momentum basis and is given by 

(p . , ,  IV IP.,)  = e2"""+ l/z)/,v 6,,,,,,, (46) 

The complete models with the free propagators and the interactions can be 
written as 

and 

3 VUPBIA8 v--NPBIAB U p =  (47) 

U~ = VNPB~ V-~PB~ (48) 

In Eqs. (47) ad (48) the superscripts on Ban and Up are not powers; 
they are labels. The superscripts on V are, however, powers. In Eq. (48) we 
have used the two different matrix operators BlAB and B~B to define the 
new operator U~B. The classical maps are once more isomorphic to 
stochastic Markov chains, and their relaxation laws can be worked out. We 
simply state without proof that the relaxation law for the map with fl = 1/8 
is C,/z, and the relaxation law for the map with fl = 1/16 is Cl/4. Here C,/2 
and C1/4 are given by Eqs. (11) and (12). The model U~ has translation 
symmetry by 1/2, while U~ does not. The spectrum of U~ is exactly doubly 
degenerate, while the spectrum of U~ is free from degeneracies. 

We prove the double degeneracy of the operator U~, as it does not 
follow from any manifest symmetry group (there is no reflection symmetry 
about any point, although the free propagator as well as the interaction 
have such symmetries). The important identity we note is the following: 

Ru  VRu  = V - I  (49) 

Thus we have 

-, VNpB~, .R, ,  V N P R , , B ]  B = (VNPRN~' . , . )  -~ Up= (50)  

due to the communication of B~s with Ru [Eq. (35)]. The operator U~ 
can thus be expressed as the square of a simpler operator Bo = VNPRNB~n. 
The operator Bo does not commute with translations or reflections, but it 

822/77/I-2-23 
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anticommutes with translations by 1/2. Thus, making use of Eq. (38), we 
get 

Bo TN = -- TNBo (51 ) 

From this it follows that if 2 is an eigenvalue of Bo, so is - 2 .  Thus the 
spectrum of U~ = B 0 is doubly degenerate. 

4. Q U A N T U M  RELAXACTION,  N U M E R I C A L  RESULTS 

The quantal equivalent of the classical correlation C~(t) of 
Eqs. (1 I)-(13) is the probability of transition from cell A to cell B as a 
function of time. Thus we consider the quantity 

1 , 1 N -  t N / 2 -  
C~ ~N ~. [(q,,,I [Ut lqn)[ 2 (52) 

= / n = 0 

Here we may take for the unitary operator U any one of the propagators 
U J= '2 or U~ "4. The PA and PB are projectors of the cells A and B, which in 
the position representation would have the form 

For short times we expect C~(t) to be close to C~(t), the classical 
correlation, since initial quantal phase space densities (constructed of some 
coherent states) propagate as if they were classical phase space densities 
evolving according to Liouville's equation. In this section we probe the 
longtime behavior using the quantal models of the three-interacting-baker's 
map. 

We write the eigenvalue problem of the unitary operator U as 

U ]ej) = e i~, [ej) (54) 

where the eigenstates are lej) and the eigenangles are ej, j = 0 ,  I, 2 ..... 
N -  I. We have then the time-independent part of the quantum correlation 
to be 

1 N -  1 IV./2 - -  1 N -  1 

C~=-~ ~, ~, ~'. [(q,,, l ej>l 2 I(q,, I Ej)I-" (55) 
n '  = N / 2  n = 0 j = 0 

C~ is also approximately the time average of C~(t), ( C ~ ) ,  over times 
longer than the inverse of the smallest eigenangle spacing. The time- 
averaged correlation is thus directly dependent on the distribution of the 
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eigenstates over the state space. If we assume that they are spread out 
equally in either regions A and B, we would get C~ to be approximately 
equal to 1/4, which is the classical t ime average. Deviations from this must  
then have essentially a quantal origin. 

In Figs. 4 -7  we show the transition probability C~(t) for various 
values of  0c and N. In all the figures the solid line represents the quantum 
model  with global R symmetry  (labeled Quantum 1), U~, while the dotted 
line represents relaxation in the quantum model  U~ (labeled Quantum 2) 
which has no global symmetries.  Figure 4 shows the case of ct = 1/8, in the 
propagators.  The dashed curves shown in all the figures are the classical 
relaxation curves of Eqs. (11 ) - (13 )  for both models.  The short-time 
behaviors of  the same models  is shown in Fig. 7 for emphasis.  Recollect 
that N is the inverse of  Planck's constant,  so that we have probed models  
in a broad range from strongly quantal to largely semiclassical. 
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Fig. 4. The rate of transition from cell A to cell B. The initial distribution is uniform over 
cell A. The solid lines are for the quantum model F J=, indicated in this and subsequent figures 
as Quantum 1. The dotted lines are for the quantum model F~ (Quantum 2). All the dashed 
lines are the classical correlations given by Eqs. (111-( 13}. Shown here are different values of 
inverse Planck's constant, N, for the case <x = 1/8. 
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Several features are at once apparent. The quantal transport for both 
models U~, '2 is slightly higher than the classical transport for short times 
(Fig. 7) and this difference decreases with decreasing Planck's constant. We 
attribute this to quantal tunneling between the cells A and B. Note that 
if we had used the block diagonal matrix B,c, Eq. (23), as our free 
propagator for U~, the classical and quantal transport would match 
exactly for the first time step. The tunneling effects are quite small, and in 
part justify our neglecting them during the interaction time step. 

Apart from tunneling effects, we see that quantal transport due to the 
propagator U],  the model with no global symmetry, follows the classical 
relaxation curve very closely much beyond the linear regimes. The quantal 
relaxation curve follows the classical one, up to a time when quantal effects 
manifest themselves as saturation of transport, with an average significantly 
lower than the classical saturation value of 1/4. There are fluctuations 
about this average that become smaller when Planck's constant is 
decreased. As we noted earlier, lower average is implied if the eigenstates 
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are not spread between the cells equally. Thus we are led to the appearance 
of  "localized" eigenstates. For increasing N, or decreasing Planck's con- 
stant, the saturation occurs at a higher value, tending toward the classical 
uniform distribution. 

Figures 5 and 6 show the classical and quantal relaxation curves for 
the parameters a = 1/4, 1/2. On increasing the "interaction strength" ~ the 
average quantal steady state approaches the classical one, and is implied by 
a gradual delocalization of the eigenstates. Such effects have been observed 
in the quantized standard map, and we will discuss this below. The same 
figures discussed above also show the relaxation behavior of the quantum 
map U~, corresponding to the classical map F]~. As noted earlier, the map 
F~ has the same relaxation laws as F] ,  but we observe that the quantal 
relaxation behavior of the corresponding map U~, is vastly different from 
that of U~; there is an anomalously large transport and large fluctuations 
about the classical average. This is especially apparent for smaller values of 
Planck's constant, that is, when the quantum effects are fully operative. The 
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Fig. 7. Same as Fig. 4, but shown are the correlations over a shorter time scale to emphasize 
short-time features. 

resonant transport between cells A and B actually decrease with Planck's 
constant until the average becomes slightly lower than the classical equi- 
librium, indicating a weak localization. This is apparent, for example, in 
Fig. 4 for N = 64. 

3.4 In Fig. 8 we plot the relaxation in the models U~) 4 and U,/,6 for 
N = 6 4 .  We note that the model U~ (Quantum 3 in the figures), with 
exactly degenerate spectrum, has very large fluctuations about the equi- 
librium, while the model U~ (Quantum 4 in the figures) has small fluctua- 
tions and is similar in behavior to the model U] ,  which for comparison we 
plot in the same figures. The larger fluctuations in the case of  the 
degenerate model U~ is due to the lack of phase cancellations, as there are 
only N/2 different eigenangles. 

Recall that the map U ]. has the global symmetry of reflection about 
the center of the square R. The commutation of RN with U', implies that 
the eigenstates are of either even or odd parity; there are no other sym- 
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Fig. 8. Correlations of the models U~ '4 (Quantum 3 and 4) compared with the classical 
relaxation and the relaxation of the model U~. 

metries, the translation symmetry of the free propagator B~s being broken 
by the interaction. Any eigenstate can be written as 

___ I~,> "~ (56) 
R~/2 I~b>J 

and is hence delocalized, in the sense that they are distributed exactly 
equally (in the position basis) over states that span cells A and B. This 
would in part lead to the higher averages. The short-time behavior of the 
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model  U]]/8, (Fig. 7) shows significantly higher t ranspor t  rate than the 
classical. Al though the results shown here are all for the cases when N is 
a power of  2, unpubl ished results indicate that  there are no surprises for 
other  values of  N. The relaxat ion behavior  qual i tat ively follows those cases 
i l lustrated here. 

We show several eigenstates in Fig. 9. F o u r  eigenstates of  U~/8 for 
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Fig. 9. (a-f) Eigenfunctions of the quantum map I, U~t/8 for N= 32. (a-e) Eigenfunctions 
largely localized to either cell A or cell B; (f) a largely delocalized eigenfunction. (g, h) Two 
eigenfunctions for the quantum map 2, U~/8. The global R symmetry is evident. 
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N =  32 are shown in Figs. 9a-9f. The localization of some eigenfunctions to 
either celiA (n<~N/2-1) or cell B (n>>,N/2) strongly suggests that the 
localization is due to the lack of classical diffusion. The R symmetry of each 
individual cell is broken by the interaction, but may be weakly present. Not 
all the eigenstates are thus localized; a significant number of them are 
largely delocalized and an example is shown in Fig. 9f. This indicate that 
the localization we have observed is not "perturbative." Indeed we have 
coupled at least 1/8 of the position states by the interaction. 

In this last figure the scarring from the fixed points at the corners of 
the square is evident. The structure of eigenfunctions within regions of 
localization is still under studyJ 51 The quantum baker's map eigenfunctions 
were scarred by many classical periodic orbitsJ ~51 Periodic orbit scarring 
has been observed in many systems 122~ since it was first observed in the 
stadium eigenfunctionsJ 16~ Scarring is also a type of localization, and we 
can expect that the models we have studied, which are coupled bakers' 
maps, will display this phenomenon. In these cases the structure of eigen- 
functions within the localized regions need to be random, but can be very 
regular. The set of periodic orbits that scar certain eigenfunctions will then 
be dependent on features of classical transport. Some eigenstates of U~/8 
are shown in Figs. 9g and 9h and the R symmetry is apparent. The plots 
are the moduli of the eigenstates in the position basis. 

5. D ISCUSSION 

We have used models of three interacting baker's maps to show the 
influence of localization and delocalization on quantal relaxation to an 
equilibrium. The delocalization in the eigenstates of the map U~ is simply 
due to the global R symmetry. The localization of the eigenstates of the 
map U~ was gradually removed by increasing the parameter ~, which also 
effects a larger classical transport. Thus the same parameters affect 
naturally the classical rate laws and quantal eigenstates. 

Previous studies that have observed similar effects include the much- 
studied quantized standard map variously known as the quantum kicked 
rotor or the quantum Chirikov map. ~51 The classical model is a kicked 
rotor with the time-dependent Hamiltonian 

H=po/2+ks inO ~ 6 ( t - n T )  (57) 

Above a critical value of K =  kT, the classical motion becomes unbounded, 
and a diffusive growth in momentum, given by 

( (Po - rio) 2) = Dt (58) 
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is observed. Here D is the diffusion constant = KZ/2. The quantal behavior 
of this time-dependent system was observed to exhibit classical diffusive 
growth in momentum for short times and then a saturation. Thus quantum 
mechanics is supposed to "suppress classical chaos." This reflects the 
localization of the eigenstates in the unperturbed ( k = 0 )  basis. Although 
this model has been mapped on to a 1D tight-binding model of solid-state 
physics, ~lv~ the dynamical origins of localization are not yet fully under- 
stoodJ to) 

The models we have begun to study in this paper differ from the 
standard map in the two essential and related details; the motion is always 
bounded, and the diffusive growth is replaced by a relaxation to a unique 
equilibrium state via mixing. The standard map on the torus has also been 
quantized Is~ and it should be interesting to campare these two models. The 
classical dynamics of the three bakers is exactly solvable, and also the 
dynamics has a simple geometrical picture. The standard map on the torus, 
on the other hand, has more parameters, thus providing us with a range of 
models. 

The three-baker's map models the motion on a single energy surface 
of a time-independent Hamiltonian system in which different chaotic 
regions are connected by an interaction that depends on some parameter. 
Classical transport in the presence of partial barriers c9~ such as cantori 
presents such a situation. There is chaotic mixing within separate regions 
of phase space and a slow crossing over between these regions. In other 
words, a single phase point spends a long time in each region before 
crossing over into the next. 

Recently Bohigas et al. ~~ studied such transport with the help of 
random matrix theories and illustrated it with the example of an aniso- 
tropic coupled quartic oscillator. They introduced the term "semiclassical 
localization" as opposed to the "dynamical localization" in the standard 
map. The localization in the quantal three-baker's map is presumably con- 
nected to the "semiclassical localization," although there is nothing really 
semiclassical about it. The models introduced here may provide an ideal 
testing ground to further study this phenomenon, as they have no addi- 
tional complications, and are finite-dimensional quantum systems requiring 
no artificial truncation of a basis. 

5.1. Break T ime  and Local izat ion 

While saturation of relaxation or suppression of diffusion may be 
implied by localization of some eigenfunctions in a particular basis, the 
natural question is, why this localization at all? We dwell briefly and 
qualitatively on the notion of the break time cls'2~ as a mechanism that 
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localizes eigenstates, at least in the kind of situations we have modeled 
using the three-bakers' maps. Classical mechanics is characterized by the 
continuity of phase space and the consequent possible long-time explora- 
tion of trajectories on fine scales, while in the quantum mechanics of 
bounded systems the energy spectrum is discrete and the evolution is 
quasiperiodic at best. The discreteness of the spectrum is resolved after a 
finite time, the break time, which is roughly proportional to the average 
level density, in this case, eigenangle density [we have defined the 
eigenangles as in Eq. (54)]. Eigenfunctions can be found as the time 
Fourier transform of propagating an initial state, and the effective explora- 
tion of the state occurs within the break time. Thus the eigenfunctions will 
be localized if the exploration (in our case simply in the configuration 
space) is limited. For instance, in the three-baker's models, states localized 
well away from the line q =  1/2 have such a possibility of becoming 
localized, leading to a localized eigenstate. 

6. S U M M A R Y  

We have discussed several models showing simple relaxation to an 
equilibrium state, both classically and quantum mechanically. In the 
absence of global symmetries, the relaxation can be significantly retarded, 
and even suppressed by quantum effects. In these cases we find significant 
localization of the eigenstates. Even in the presence of global symmetry and 
in the deep semiclassical regime we find a small difference between in the 
quantum steady state and the classical steady state, implying the existence 
of weak localization. These simple models of quantal transport in bounded 
systems thus display a rich structure. We have also introduced some simple 
models of tunneling between classically disjoint and chaotic regions of 
phase space. 

APPENDIX  A 

Elskens and Kapral ~1 showed that the three-bakers' transformation is 
isomorphic to a finite Markov shift for rational values ofa. We include the 
partitions for completeness, and to demonstrate that the maps F~ "2, 
have identical partitions and hence identical relaxation laws given by 
Eqs. (11 )-(13). The details differ from those of ref. 1 in notations and scale, 
and also in the interchange of position and momentum coordinates. The 
latter change means that our forward-iterated partitions are the backward- 
iterated partitions of ref. 1 and vice versa. 

If ot = a/b for a and b integers, one partitions the unit square of the 
phase space into 2b vertical bands consisting of rectangles [k/2b, 
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(k + 1 )/2b) x [0, 1 ); k is an integer such that 0 ~< k ~< 2b - 1. For b -- 2, this 
partition is illustrated in Fig. 2(a). The rectangles of the partition Qk (also 
called "atoms") are labeled by integers. The forward iterate of this partition 
of the phase space square is shown in Fig. 2b for the map Ft~/2 and in 
Fig. 2c for the map F2/2 . These maps were defined in the text by 
Eqs. ( 1 )-(7). 

The stable and unstable directions of both maps are globally parallel 
to the p and q axes respectively, just as for the individual bakers' map. 
A forward iterate of the partition sits within the original partition in such 
a way that there is no further partitioning in the stable direction, but there 
are additional partitions in the unstable direction. In other words, the 
unstable manifolds that form part of the partition in Fig. 2a are a proper 
subset of the unstable manifolds that form part of the partition in Fig. 2b. 
Similar conditions are satisfied by the part of the partition boundary that 
is formed by stable manifolds, under backward iterations. 

The forward partitions are labeled by symbols whose first integer 
represent the atom they belong to at "present" and the second integer refers 
to the atom they just came from. Thus the phase square gets partitioned 
horizontally by forward iterates into finer regions. The backward iterates, 
not illustrated here, similarly partition phase.space vertically. This is the 
requirement for a partition to be a Markov partition/~1~ 

We see from comparing Figs. 2b and 2c that the partition works for 
both the maps F~ "2 in an essentially identical way. A measure, or proba- 
bility, equal to their area is assigned to the atoms, Pk =/~(Qk), and we write 
also pk~=~(Qkl) .  The transition probability from atom Q / t o  atom Qk is 
mkl = ll( Qkl)/It( QI) = 2blt( Qk/)- 

The matrix of transition probabilities for ~ = 1/2, obtained from either 
Fig. 2b or Fig. 2c, is then 

1/2 1/4 1/4 / 
1/2 1/4 1/4 00 

1/4 1/4 1/2 

1/4 1/4 1/2/  

(A1) 

The case of ~ =  1/2 is also isomorphic to a finite Bernoulli shift, as 
shown in ref. 1. The Markov matrices corresponding to 0c= 1/4 and 1/8 
may be similarly constructed. These are all double stochastic matrices; 
because the atoms of the partition had equal measures, they have an 
unique equilibrium state corresponding to the uniform distribution. 

The correlation function in the text may now be evaluated. The den- 
sities we have chosen are particularly simple, as they can be constructed 
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out of the atoms of the Markov partition. Then the evaluation of correla- 
tions is equivalent to the problem of finding the powers of the Markov 
matrices. This leads to Eqs. (11 )-(13). 

A P P E N D I X  B 

1 Here we give some details of the quantization of MAB, which is simply 
two bakers sitting side by side. Since, naturally, this depends strongly on 
the quantization of a lone baker. We refer to refs. 3, 7, and 15 for elabora- 
tions and emphasize here the differences that arise. The lone baker map on 
the unit square is given by the transform 

~(2q, p/2), 0~<q< 1/2 
(q"P')=((2q- l , (p+l) /2) ,  1/2~<q<i (B1) 

Its quantization proceeds by mimicking quantally the classical partition 
into left and right vertical rectangles (Fig. (la), with a partitioning of the 
Hilbert space into two orthogonal subspaces of dimensions N/2, repre- 
sented by L ~ and R Q. If I~b L) is a vector in L Q and I~b R is a vector in R Q, 
these spaces are specified by requiring 

q . l~  b L ) = 0  if n>tN/2 (B2) 

(q,,Iq~ R ) = 0  if n<~N/2-1 (B3) 

Thus we require N to be even. Classically the left partition is stretched in 
the q direction and contracted in the p direction, so that it forms the 
horizontal bottom half of the phase square. The right vertical partition is 
similarly transformed into the upper horizontal half of the phase square 
(Fig. lb). Thus the vector space is also likewise divided into the orthogonal 
subspaces spanned by the vectors ~b B and fiT specified by the following 
conditions: 

(p . ,  L r  = 0  if m>~N/2 (B4) 

(P., l~'r)=O if m<~N/2-1 (B5) 

This dynamics is quantally translated by requiring that each vector from 
the subspace spanned by I~b L) be transformed into a vector in the subspace 
spanned by the vectors I~bn). In the momentum representation the trans- 
form of an N/2,component vector ~b L from the subspace L Q written in the 
position representation is given by the vector 

Gu/z(~ L) (B6) 
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See ref. 7 for the original quantization. Here GN/2 is the N/2 x N/2 Fourier 
transform defined for N sites by Eq. (14). 

Since any vector can be written as a sum of vectors from the subspaces 
L Q and R Q, the quantal propagator in the mixed representation is thus 
given by the matrix 

(Go~2 GON/2) (B7) 

Transforming to the position basis, we get the quantum baker's map 

Bu=GTvI(Go/2 0 ) (B8) 
G N/2 

In the quantum baker's transformation outlined above, the partition of 
phase space before and after the transformation fell naturally into sub- 
spaces that had exact quantal projectors associated with them, and could 
be easily writen in either the position (before the transformation) or 
momentum (after the transformation) basis (Figs. la and lb). A similar 
partition before the transform is shown in Fig. 2a for the map M~B. The 
partitioning of the square into four equal squares after the transformation 
cannot be implemented quantally. We can, however, consider the transfor- 
mation of the partitions 1 and 3 together into the bottom half of the 
square, and similarly partitions 2 and 0 together into the top half of the 
square. This is the origin of tunneling when we quantize the map MAs. We 
will see that this partitioning is sufficient to describe the quantum map. 

We again mimick the partitioning of the classical phase space before 
the transformation (Fig. 2a) by dividing the Hilbert space into four 
orthogonal vector spaces of dimensions N/4 each. Thus we will require N 
to be a multiple of 4. Let the four orthogonal spaces have representative 
vectors (~b 3, ~b 2, ~b l, ~b~ and we will require that 

(q,,l~b 3 ) = 0  if n>~N/4 (B9) 

with similar conditions on the other vectors. 
The transformation of partitions 3 and 1 to the lower horizontal half 

of the square is thus once more implemented quantally as a Fourier trans- 
form on N/2 sites. Thus we write the transformed vector in momentum 
representation as 

GN/2 $, =(GL/21GN/2) (~l (BI0) 
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Here the vector to the right of the GN/,_ matrix is written in the position 
representation. We have split the matrix GN/2 into a right and a left half, 
because these are the operators that act on the individual vectors from the 
subspaces 3 and 1, respectively. They are rectangular matrices of dimen- 
sions N/2 x N/4. A similar argument holds for the transformation from 2 
and 0 to the top horizontal half of the space square. Thus we get the 
propagator of M~s in the mixed representation 

(Go/z 0 G~/,_ O) 
G~/, 0 G~/2 (Bll) 

Upon transforming to the position representation via the inverse 
Fourier transform, we get the propagator (17). Quantization of the other 
maps, such as like M ] n ,  follows from similar arguments. 
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